

Computer Science Engineering MSc Master programme

Full-time study programme

Dr. Katalin Kovács

associate professor, programme supervisor Department of Informatics

FACULTY OF MECHANICAL ENGINEERING, INFORMATICS AND ELECTRICAL ENGINEERING

ENGLISH-TAUGHT MSC PROGRAMMES AT OUR FACULTY

Business Informatics

Computer Science

Computer Science Engineering

Electrical Engineering

Mechanical Engineering

GENERAL INFORMATION

• **Responsible department:** Department of Informatics

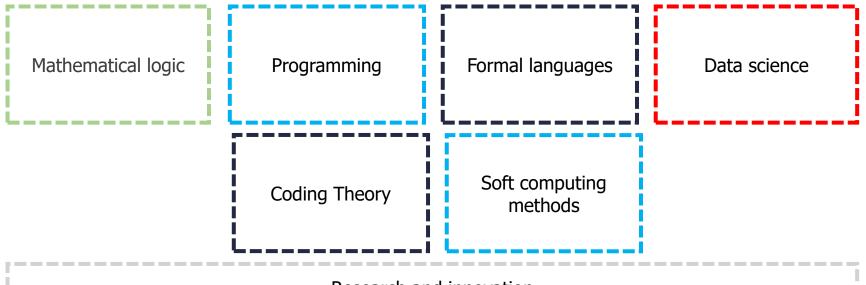
- <u>https://it.sze.hu/en_GB/welcome</u>)
- Department Office: Main Building, Floor 6th; B Building, Room number B602
- Student contact: Katalin Lili László (laszlo.lili.katalin@ga.sze.hu)
- Program supervisor: Dr Katalin Kovács (kovacsk@sze.hu)

ABOUT THE COMPUTER SCIENCE ENGINEERING MSC PROGRAMME

Occupation obtained	Computer Science Engineering			
Length of education	4 semester			
Credit points	120 credits			
Schedule	Full-time			
Compulsory internship	6 weeks (240 working hours)			
Tuition fee	 for Hungarian students: state-funding or self-funding for international students: scholarship (e.g. Stipendium Hungaricum) or self-funding 			

EDUCATIONAL OBJECTIVES

 The goal of the education programme is to provide students a high level knowledge built on a strong foundation of natural and technical sciences related to the fields of Computer Science and Information and Communications Technologies (ICT) in order to enable them to understand, design, implement and integrate complex, heterogeneous networked systems, and furthermore, to coordinate and perform research and development tasks for IT purposes.



EDUCATIONAL OBJECTIVES

The programme will equip students with knowledge of algorithms, performance and quality of IT services, communications systems protocols and architectures, a safe and secure design of hardware and software components of embedded and distributed systems, and also to combine a scientific perspective with the practical engineering approaches. Advanced and emerging future technologies, such as Artificial Intelligence methods are in special focus. As a basic objective, the students will be prepared to be able to continue their studies in postgraduate schools, such as in the Multidisciplinary Doctoral School of Engineering Sciences at Széchenyi István University.

MAIN TOPICS IN THE CURRICULUM

Research and innovation

DETAILS OF THE PROGRAMME

- **Specialization/modules:** there are no specialization in the degree.
- Practical training/Internship: to be undertaken at a company independent from the university and to last for a minimum of six weeks.
- The supervisory system of knowledge: it is composed of performing the requirements detailed in the curriculum, finishing professional practice, creation of thesis work and passing the final exam.

REQUIREMENTS OF THE THESIS

- The thesis has to solve an IT problem or work out a research topic during two semesters based on the knowledge of the student, complimented by studying the literature and supervised by a consultant.
- The candidate proves his/her proficiency by the thesis work in applying the knowledge learned, ability to perform analysis and design tasks, is experienced in the literature and can use it to create value.

CONDITIONS FOR TAKING THE FINAL EXAM

• All requirements of the curriculum must be met, furthermore

- collect at least 120 credits, in which the thesis work represents 30 credits,
- the requirements of physical education and professional practice must be fulfilled,
- the thesis work must be judged and accepted by a reviewer.

FINAL EXAM

- The candidate has to present and defend his/her thesis work. The members of the committee ask questions referring the topic of the thesis during the complex exam, in order to check the skills of the candidate.
- The committee grades the result of the final exam with a single mark by averaging the grades given to the thesis defense and the complex exam. If this grade is "fail", the committee decides whether partly or fully accepts the thesis work.

THE ASSESSMENT OF DEGREE

 Weighted grade point average considering the whole study time, arithmetic average of the grades given to the complex exam and thesis defense.

OBLIGATORY SUBJECTS

Total credits: 92

No.	Code	Title	Theory	Practice Lab		Exam type	Credits	Suggest ed semeste r	Prerequisites
2.	GKNM_INTA058	IT Project Management	2	2	0	v	4	1	
3.	GKNM_MSTA002	Theory of Algorithms	2	2	0	v	5	1	
4.	GKNM_MSTA025	Data Analysis	4	0	0	v	4	1	
5.	KGNM_VKTA005	Management Competencies	2	2	0	f	5	1	
6.	GKNM_AUTA011	Automatic Controls	2	0	0	v	5	2	
7.	GKNM_INTA055	Formal Languages and Automata	4	0	0	v	4	2	
8.	GKNM_INTA057	System and Software Testing	2	2	0	v	4	2	
9.	GKNM_TATA019	Coding theory	4	0	0	v	5	2	
10.	KGNM_GETA025	Advanced Corporate Finance	0	2	0	v	4	2	
11.	GKNM_INTA098	Thesis Consultation I. (Master Programme)	0	0	0	f	15	3	
12.	GKNM_MSTA003	Numerical Analysis	2	2	0	v	5	3	
13.	GKNM_INTA059	Knowledge Base Technologies and Planning	2	2	0	v	4	4	
14.	GKNM_INTA060	Kernel engineering	2	2	0	v	4	4	
15.	GKNM_INTA063	Translation Programs	2	2	0	v	4	4	
.e 16.	GKNM_INTA099	Thesis Consultation II. (Master Programme)	0	0	0	f	15	4	GKNM_INTA098

DIFFERENTIATED PROFESSIONAL **ELECTIVE SUBJECTS**

GKNM_AUTA010			
GKNM_AUTA029			
GKNM_FKTA031			
GKNM_FKTA032			
GKNM_INTA064			
GKNM_INTA066			
GKNM_INTA067			
GKNM_INTA068			
GKNM_INTA069			
GKNM_INTA070			
GKNM_INTA071			
GKNM_INTA072			
GKNM_INTA073			
GKNM_INTA074			
GKNM_MSTA024			
GKNM_MSTA034			
GKNM_TATA046			
GKNM_TATA048			
GKNM TATA051			

At least 30 credits must be collected until the end of studies from this group of subjects.

OPTIONAL SUBJECTS (FREELY ELECTED COURSES)

Nanoelectronics	GKNM_FKTA012			
Measuring Theories and Techniques	GKNM_FKTA013			
Nuclear Technology	GKNM_FKTA035			
Risk Analysis	GKNM_MGTA021			
Exchange Course 2.	KGNB_NOKM022			
Leadership and Organizational Communication	KGNM_VKTA003			
Innovation and Research Communication I.	KGNM_VKTA020			
Innovation and Research Communication II.	KGNM_VKTA021			

At least 6 credits must be collected until the end of studies from this group of subjects.

FURTHER EDUCATIONAL OPPORTUNITIES

Doctoral Programme in Informatics

Doctoral School of Multidisciplinary Engineering Sciences

CAREER OPPORTUNITIES

computer and information research scientist

...........

17 | FACULTY OF MECHANICAL ENGINEERING, INFORMATICS AND ELECTRICAL ENGINEERING

HIGHLIGHTS OF THE PROGRAMME

Strong foundations for AI, data science, cloud computing and programming

Small class size - with all benefits of learning experience in a small community

Wide range of elective subjects with individual paths in the curriculum

Work experience in high quality industry and international projects

We wish you a successful study at our university and eventful and enjoyable stay in Győr!

About the Faculty: givk.sze.hu